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The theory  is cons idered  for  the c a l o r i m e t r i c  method of [2]. Exper imenta l  and theore t ica l  
der iva t ions  a r e  given for  the t e m p e r a t u r e  of the ma te r i a l  as a function of t ime  in t e r m s  of 
the initial wa t e r  content when the p r e s s u r e  is r e l ea sed .  A descr ip t ion  is given of the device 
for  de termining  smal l  wa te r  contents in wa te r - so lub le  powders .  

I t  is often n e c e s s a r y  to moni tor  smal l  (~0.02 kg/kg) and v e r y  smal l  (~0.003 kg/kg) wa te r  contents in 
the production of powder  ma te r i a l s ;  g r a v i m e t r i c ,  chemica l ,  and e lec t r i ca l  methods of moi s tu re  d e t e r m i n a -  
t ion a re  l a rge ly  unsuitable for  this purpose  [1]. 

I f  a thin l aye r  of the mois t  m a t e r i a l  is placed in a closed volume and this is evacuated,  one gets  rapid 
evaporat ion of wa t e r  f rom the m a t e r i a l ,  which is accompanied  by absorpt ion of heat ,  which is absorbed  
to ove rcome  the interact ion of the wa t e r  molecules  with those of the ma t e r i a l  (r w) and for  a phase  t rans i t ion  
of this w a t e r  (r) [3]. This  leads to a sha rp  fall in the t e m p e r a t u r e  of the specimen.  The t e m p e r a t u r e  r i s e s  
again by heat  t r a n s f e r  with the surroundings ,  so the t e m p e r a t u r e - v a r i a t i o n  curve  has a pronounced min i -  
m u m ,  whose depth is propor t ional  to the initial wa te r  content u 0. 

As u 0 and the th ickness  of the l a y e r  a re  s m a l l ,  while the p r e s s u r e  reduction is rapid,  the t e m p e r a -  
tu re  min imum is reached  in 20-50 sec and m a y  be 3-4~ 

These  s ta tements  can be demons t ra ted  by consider ing the heat  and m a s s  t r a n s f e r  within the mo i s t  
m a t e r i a l  on p r e s s u r e  r e l e a s e .  These  p r o c e s s e s  a re  of complex c h a r a c t e r ,  and so there  a r e  cons iderable  
diff icult ies in exact  solution [4]; however ,  the basic  laws may  be der ived as  a f i r s t  approximat ion  via the 
equations for  the heat  balance.  

In Pa r t  I we cons ider  a s impl i f ied solution, while in Pa r t  II we cons ider  the more  comple te  solu-  
tion, and in the concluding section we analyze and compare  the resu l t s .  

I .  An unbounded l a y e r  of ma te r i a l  is exposed to vacuum; the th ickness  of the ma t e r i a l  is about 
2 "10 -3 m,  so that  the t e m p e r a t u r e  dis tr ibut ion in the l aye r  is neglected.  The heat  t r a n s f e r  with the en-  
v i ronment  is subject  to Newton 's  law ~ t ( t c - t s ) ,  while the t e m p e r a t u r e  of the spec imen is m e a s u r e d  during 
the initial p r e s s u r e s  at  reduction; in this t ime  the t e m p e r a t u r e  var ia t ion and change in wa t e r  content a r e  
smal l ,  and the re fo re  a t m a y  be cons idered  as constant.  The loss  of w a t e r  f rom the spec imen is desc r ibed  
in t e r m s  of a continuously dis t r ibuted negative heat  source .  

The following is [5, 6] the di f ferent ia l  equat ion for  the heat  balance:  

qu -]-at (tc--ts) - ~  (vt)n---- c?R~ ~ + ~z' ( P s -  Pc) r Po (1) 
0'~ P ' 

where  qu, a t ( t c - t s ) ,  - M ~ t ) n  a r e  r e spec t ive ly  the heat  fluxes due to radia t ive  heat  t r a n s f e r ,  convection,  
and t h e r m a l  conduction. The heat  rece ived  by the body goes to heat  the ma t e r i a l  cTRv(~/Or} and to ev ap o r -  
ate  w a t e r  a ' (CPs -Pe ) r (P0 /P )  (internal negative heat  source}. 

I f  appropr ia te  m e a s u r e m e n t  conditions a r e  used, qu and MVt) n may be made zero and (1) may be 
simplified; (1) becomes  
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Fig.  1. Mois tu re  d r i f t  u (kg/kg)  v e r s u s  t ime  T (see) at p r e s s u r e  d rop  fo r  NH4NO 3. 

Fig.  2. T e m p e r a t u r e  m a t e r i a l  t(~ v e r s u s  t ime r (sec) :  1) expe r imen ta l  c u r v e  at  Rv 
= 3 �9 10 -3 m; 2) ca lcu la t ion  f r o m  (17) at  R v = 4 �9 10 -3 m; 3) calct t lat ion f r o m  (17) at  R v = 2 
�9 10 -3 m; 4) ca lcu la t ion  f r o m  (6) at  R v = 2 . 1 0  -~ m. 

P0 Ot + a' (Ps - -  Po) r - -  . a~ (t~ - t,) = cv Rv ~ t )  (2) 

The coef f ic ien t  a t fo r  the m a t e r i a l s  m a y  be found f r o m  publ ished s o u r c e s  [7] o r  d e t e r m i n e d  by independent  
e x p e r i m e n t  [8], e . g . ,  fo r  a m m o n i u m  n i t ra te  with 0.003-0.02 kg /kg  the c~ t is 58.0 W / m 2 . d e g .  The second  
t e r m  on the r igh t  in (2) t akes  accoun t  of the phase  t r ans i t i on  of  the w a t e r  and m a y  be put as  

a '  (Ps - -  Pc) �9 -p-- = r?Rv Ox " (3) 

Equat ion  (2) f inal ly  b e c o m e s  

~h (tc__ t~) =C. D 07 (4) 

To in tegra te  (4) we need to know u = u ( r ) ,  which has been d e t e r m i n e d  in our  m e a s u r e m e n t s ;  a cel l  
conta in ing the m o i s t  m a t e r i a l  was  suspended  on a sens i t ive  s t r a in  gage  s y s t e m  having spec ia l  t e m p e r a -  
t u r e - c o m p e n s a t i n g  dev ices ,  and the r ead ings  of  the  s t r a in  gages  w e r e  r e c o r d e d  with an t~PP-09  po ten t io -  
m e t r i c  r e c o r d e r .  The r e s p o n s e  fo r  a load of 5�9 10 -3 kg was  1 �9  10 -3 m / k g .  We found that  the change  in 
w a t e r  content  on r educ ing  the p r e s s u r e  is d e s c r i b e d  quite a c c u r a t e l y  by an exponent ia l  law:  

u (v) = u 0 (1 - -  b) -}- bu o exp (--  % %  (5) 

w h e r e  b and a p  a r e  coef f ic ien t s  to be d e t e r m i n e d  by exper imen t .  We subs t i tu te  (5) into (4) and in tegra te  
with z e r o  init ial  condi t ions  to ge t  

t (T) = - -  u o exp(--%~)--exp 
( ~ , .  ) Roc, 

c . Ruc? - -  ap 
(6) 

rb (avRoc?.--l)  [ ( %Ro)  ] 
= - - u  o - - [ - e x p ( - p d F o )  at 1 - -exp  P d - -  ac? Fo . 

I t  fol lows f r o m  (5) tha t  not  all the w a t e r  is r e m o v e d  f r o m  the m a t e r i a l  on a r e a s o n a b l y  p ro longed  
evacua t ion ,  which m a y  be explained because  the rap id  evapora t ion  f r o m  the s u r f a c e  p r o d u c e s  a c r u s t  of  d r y  
m a t e r i a l  which  p r e v e n t s  evapora t ion  f r o m  the d e e p e r  l a y e r s .  

The o b s e r v e d  t(T) on p r e s s u r e  r e l e a s e  is shown by  Fig.  1 to  a g r e e  c l o s e l y  with the t heo re t i ca l  r e l a -  
t ionship  of (6); in the ca lcu la t ions  we used the m e a s u r e d  a p  and b, which fo r  a m m o n i u m  n i t ra te  a r e  0.034 
s ec  -1 and 0.45 r e spec t ive ly �9  
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Fig. 3. Block diagram of measur ing device: 1) p r e -  
l iminary  vacuum pump; 2) vacuum chamber;  3) dc 
bridge; 4) dc acce le ra to r ;  5) r eg i s t e r ing  device 
f 
EPP-09. 

The curve  of (6) has a turning point a t  

1 ~zvRvc ~ 
T max  = In ~ (7) 

(Zt (Z t 

II, An unbounded l aye r  of mois t  mater ia l  is 6 -8 .1 0  -3 m thick o r  more .  In this ease we have to take 
account of the t empera tu re  distr ibution within the mater ia l .  

The differential  equation for  the heat balance in dimensionless  fo rm is [9] 

OT (X, Fo) O~T (X, Fo) ravbR2 v 
0 Fo OX 2' - -  u~ c (t c -  to) exp (-- Pd Fo), (8) 

where  

The initial conditions a re  

T (X, Fo) =- t (X, Fo) - -  t o (9) 
t c - -  t o 

T(X,  0) = 0, (10) 

and the boundary conditions are  

OT(1, Fo) 
+ Bi [1 - -T(1 .  Fo)] = 0, (11) 

OX 

OT(O, Fo) = O, where Bi = ~,tR~ (12) 
aX 

The solution to (8) subject  to (10) and (11) is 

T ( X ' F ~ 1 7 6  t o - -  t o = --  u~ - - r b a [ (  l - c -  cos I/'P-d --c~ grPdX__~l lfP'd sin l / ~  ) exp (-- Pd Fo) 

where  

-- Z Pd 
Pd - -  ~ 

n ~ l  

A~cos~exp(--~t~Fo) -t- 1-- A n cos ~.X exp (-- ~ Fo)] , (13) 

An = 2sin ~n ; 
~ -f- sin }x~ cos i~ 

1 tznare the roots of ctg~-- ~ ~. (14) 
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The change in the t e m p e r a t u r e  at  the middle of the l a y e r  (X = 0) is 

t(0, Fo)-- to = - - u  o rab ' [ (  1 - c  cos ] , / ~ - -  ~ 1  1 i/P-d sin ~/P-d) exp(--PdFo) 

- -  p d ~ t l  exp(--txIFo) +(tr I - -  A. exp(--M2nFo) . 

(15) 

We see f rom (15) that  the f i r s t  t e r m  is propor t ional  to the initial w a t e r  content and the second to the 
t e m p e r a t u r e  d i f ference  ( tc- t0) ;  if these  t e m p e r a t u r e s  a re  equal (t c = to), the second t e r m  becomes  zero ,  
and t he re fo re  the t e m p e r a t u r e  at the middle of the l a y e r  is dependent only on the initial wa t e r  content. 

The l a t t e r  a s se r t i on  is c o r r e c t  a lso  for  t c ~ t 0, but in that  case  one must  place within the vacuum 
c h a m b e r  a second (compensating) cell  containing the d ry  ma te r i a l  and m e a s u r e  its t e m p e r a t u r e  on reducing 
the p r e s s u r e ,  as we now show. 

Cons ider  the t e m p e r a t u r e  change at the middle of the l a y e r  of d r y  mate r i a l  (compensat ion cell). The 
heat  ba lance  equation (8) in this case  will not contain a second t e r m  on the r ight ,  s ince the re  is no internal  
heat  source;  then the solution to (15) with the s a m e  initial and boundary  conditions of (10) and (11) is 

tdry(0 , Fo)--to=(te--to)[l" 2A,~exp(--/~2Fo)] , (16) 

I f  we sub t rac t  (16) f rom (15) we get  on the r ight  only a t e r m  dependent on the initial wa t e r  content; 
the final solution is 

t (0, Fo) - -  to = - -  uo c 1 ]/P-d] exp (--  Pd Fo) 
cos l / 'P -d -  -g[- v 'Pd sin l - -  Pd  ~ p 2  n exp (--  ~.~ Fo) 

n =  l 

= - -  u o ~ exp (--  Pd Fo) [ - -  , ~  - -  
c Bi cos VP-d - -  ]/-P--d sin l/P-d 

n = l  

a Pd exp (Pd - -  la~) Fo] (17) 
Pd - -  2 ~t n 

Equation (17) contains an infinite s e r i e s ,  but it is convenient  for  prac t ica l  use,  because  even for  Bi = 1 
(in p rac t i ce ,  Bi << 1) the s e r i e s  can be r e s t r i c t e d  to four t e r m s .  We see on compar ing  (6) and (17) that  they 
a r e  the s ame  genera l  type; Figure  2 c o m p a r e s  (6) and (17) with exper iment .  

Solutions to (16) f o r m  the bas i s  of a method of de termining  smal l  w a t e r  contents.  The w a t e r  content 
is m e a s u r e d  by recording  the m ax i m um  t e m p e r a t u r e  di f ference between two t r ansduce r s  filled with the 
mo i s t  and d ry  m a t e r i a l s  when the p r e s s u r e  is reduced; it follows f rom (6) and exper imen t  that  this d i f fe r -  
ence is propor t iona l  to the initial wa t e r  content,  but is independent of the densi ty  of the ma te r i a l  and the 
th ickness  of the l aye r ,  as  well as  of any p r e sence  of wa te r - so lub l e  chemica lcompounds  and the initial t e m -  
p e r a t u r e .  

The t ime  taken by a single m e a s u r e m e n t  is 20-25 sec.  The method is of good accu racy  and it can 
be r ecommended  for  rapid ana lys i s ,  as  well as for  d i r ec t  m e a s u r e m e n t s  in a flow sys tem.  

This  method is the bas i s  of our  device for  measu r ing  smal l  wa t e r  contents (Fig. 3), which consis ts  
of a t r ansduce r ,  a m e a s u r e m e n t  c i rcui t ,  a record ing  sy s t em,  and a r o t a r y  vacuum pump. The p r e s s u r e  
is reduced by the pump,  and the two t r a n s d u c e r s  a r e  luci te  cel ls  of s ize  0.06 • 0.06 • 0.004 m,  to the bo t -  
tom of which a r e  at tached r e s i s t a n c e  t h e r m o m e t e r s  and which a r e  suspended within the vacuum chamber .  
The r e s i s t a n c e  change in the ma te r i a l  is 

A R = Ro~ [t(0, Fo) - - to l .  (18) 

The two sensing e lements  a re  connected in opposite a r m s  of a dc br idge  working nea r  balance.  The 
ou t -o f -ba lance  voltage p a s s e s  to a d c  ampl i f i e r  employing an F 117 photoelec t r ic  ampl i f i e r  and thence to 
an ]~PP-09 r e c o r d e r .  

The output voltage is [10] 

A U (Fo) = _E• R A R (Fo) = [~E o R~o [t (0, Fo) - -  to]. (19) 
z r ed .  z red .  
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This shows that the output voltage is proport ional  to the supply 
voltage, but this does not lead to an e r r o r ,  because:  1) the supply may 
be taken f rom a KBS stabilized power supply; 2) the t ime of measu re -  
ment is so small that E 0 does not have a chance to vary ;  3) one can 
adjust E 0. 

The device can work with one sensing element (the dc bridge con- 
tains only the the rmomete r  attached to the moist  material) or  with two 
sensing elements (as descr ibed above). The la t te r  mode of connection 
eliminates t ransients  ar is ing in the chamber  that are  unrelated to the 
humidity of the mater ia l  (this makes it possible to get a zero  t empera -  
ture change for u = 0), and it also eliminates the bridge unbalance due 
to ( tc- t0) .  As the dry  mater ia l  one can use ei ther  previously  dried 
mater ia l  with u u 0 or  ~ mater ia l  that has been dried for 5-10 min in a 
vacuum chamber  Ures ~ 0 (in the la t te r  case,  since the residual water  
is not removed,  it behaves like the dry  mater ia l  on p re s su re  reduction). 

We see f rom (19) that in the near ly  balanced state and with r = constant (heat of evaporation constant 
throughout the range of water  contents) the  out-of-balance voltage is l inear  in AR, and consequently in the 
initial water  content. 

Now we consider  the main source of e r r o r  in this dev ice .  This comes f rom the e r r o r  of converting 
the water  content to a t empera ture  difference,  because current  measur ing techniques enable one to record  
the tempera ture  very  accura te ly .  

The instrument  was calibrated by prepar ing specimens of mater ia l  (granulated NH4NO3) with water  
contents of 0-1.2% by steps of 0.1%, which were kept for over  three months at a constant t empera ture  to 
obtain a uniform water  distribution in the mater ia l ,  which for this purpose was periodical ly s t i r red .  As a 
check method we used the State Standard (No. 2-65) for  drying. 

The water  content of each prepared  sample was measured 20-25 t imes with the apparatus:  in all we 
made more  than 200 measurements .  

Figure  4 shows the relationship between the water  content as determined by drying and the mathe-  
mat ical ly  expected values read f rom the scale of the device; the relationship is close to l inear ,  and the 
pa rame te r s  may be determined by leas t  squares  [11]. The resul t  is N = 260 u - 5 1 .  

The soundest measure  of the e r r o r  is the entropy e r r o r  calculated f rom the information theory  pr inc i -  
ple; this is given by [12]: 

A--  n d = _+ 17.0 mm. (20) 
I n 2 

10-h- Z n~lgn~ 
=1 

Then the relative e r r o r  of conversion is 

The total e r r o r  of the device, 

A 17.0 
8tr -- Xs-- ~ -- 270.~ = 6,a %. 

incorporating the t empera tu re -measu remen t  e r r o r  (~1%) is 

8dev = V  82 ' 82 = 6,4 %. tr-t- rheas 

The t ime for  one measurement  is 20-30 sec.  

N O T A T I O N  

u is the mois ture  content of mater ia l ,  kg/kg; 
u 0 is the initial mois ture  content, kg/kg; 
r is the t ime, sec ;  
Fo is the Four ie r  number; 
Pd is the Predvoditelev number; 
X is the reduced coordinate; 
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is the d imens ion less  t e m p e r a t u r e ;  
is the m a t e r i a l  t e m p e r a t u r e ,  ~ 
is the t e m p e r a t u r e  of m a t e r i a l  su r face ,  ~ 
is the t e m p e r a t u r e  of dry  m a t e r i a l ,  ~ 
is  the t e m p e r a t u r e  of med ium,  ~ 
~s the total  p r e s s u r e  of v a p o r - g a s  mix tu re ,  m m  Hg; 
~s the par t ia l  p r e s s u r e  of vapor  at m a t e r i a l  su r face ,  m m  Hg; 
~s the par t ia l  p r e s s u r e  of vapor  in medium,  m m  Hg; 
a r e  the roo t s  of c h a r a c t e r i s t i c  equation; 
is the initial t h e r m a l  ampli tude;  
is the heat  t r a n s f e r  coeff icient ,  W / m  2 �9 deg; y 

is the m a s s  t r a n s f e r  coeff icient  at  no rma l  p r e s s u r e ,  k g / m  2 g .  m m  Hg; 
is the t h e r m a l  conductivity,  W / m  "deg; 
is the t h e r m a l  diffusivity,  m2/s  ec; 
is the specif ic  heat  of m a t e r i a l ,  J / k g  .deg;  
zs the coeff icient  fo r  r a t e  of m o i s t u r e  r emova l  f r o m  m a t e r i a l  at p r e s s u r e  drop,  1 / s ec ;  
is the d imens ion less  coeff icient ;  
is the heat  phase  t r an s fo rm a t i on ,  J / m o l e ;  
is the heat  for  overcoming  f o r c e s  of wa te r  bond with m a t e r i a l ,  J / m o l e ;  
is the densi ty  of ma te r i a l ,  kg/m~; 
is the ou t -o f -ba lance  br idge  voltage,  V; 
~s the initial value of r e s i s t a n c e ,  ohm; 
is the change of r e s i s t a n c e ,  ohm ; 
~s the t e m p e r a t u r e  coeff icient  of r e s i s t a n c e ,  1/deg;  
~s the voltage of br idge  feed,  V; 
~s the reduced  r e s i s t a n c e ,  ohm; 
~s the c h a r a c t e r i s t i c  d imensic~,  m;  
is the read ings  of m o i s t u r e  m e t e r ,  m m ;  
~s the ent ropy e r r o r ,  r am;  
is the r e l a t i ve  e r r o r  of t r a n s f o r m e r ,  %; 
~s the r e l a t i ve  e r r o r  of t e m p e r a t u r e  measu r ing ,  %; 
is the r e l a t i ve  e r r o r  of m o i s t u r e  m e t e r ,  %; 
is the length of r e g i s t e r  sca le ,  m m ;  
~s the total  number  of m e a s u r e m e n t s ;  
is the n um ber  of divis ions within e r r o r  range ;  
is the num ber  of e r r o r s  pe r  i - th  sect ion of divis ions;  
~s the width of f r a c t u r e  band, m m .  

S u b s c r i p t s  

c r e f e r s  to the med ium;  
M r e f e r s  to the m a t e r i a l ;  
d ry  r e f e r s  to d ry  m a t e r i a l ;  
sc r e f e r s  to s ca l e .  
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